Estimates the anchor transformation for the Anchor-Objective. The anchor transformation is \(W = I-(1-\sqrt{\gamma}))\Pi_A\), where \(\Pi_A = A(A^TA)^{-1}A^T\). For \(\gamma = 1\) this is just the identity. For \(\gamma = 0\) this corresponds to residuals after orthogonal projecting onto A. For large \(\gamma\) this is close to the orthogonal projection onto A, scaled by \(\gamma\). The estimator \(\text{argmin}_f ||W(Y - f(X))||^2\) corresponds to the Anchor-Regression Estimator (Rothenhäusler et al. 2021) , (Bühlmann 2020) .
get_W(A, gamma, intercept = FALSE, gpu = FALSE)
W of class matrix
, the anchor transformation matrix.
Bühlmann P (2020).
“Invariance, Causality and Robustness.”
Statistical Science, 35(3).
ISSN 0883-4237, doi:10.1214/19-STS721
.
Rothenhäusler D, Meinshausen N, Bühlmann P, Peters J (2021).
“Anchor Regression: Heterogeneous Data Meet Causality.”
Journal of the Royal Statistical Society Series B: Statistical Methodology, 83(2), 215–246.
ISSN 1369-7412, doi:10.1111/rssb.12398
.