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ABSTRACT ARTICLE HISTORY
Many imputation methods have been developed over the years and Received 23 June 2023
tested mostly under ideal settings. Surprisingly, there is no detailed Accepted 21 February 2024
research on how imputation methods perform when the idealized KEYWORDS
assumptions about the distribution of data and/or model assump- Missing values; imputation;
tions are partly not fulfilled. This research looks into the susceptibility simulation; outliers;

of imputation techniques, particularly in relation to outliers, misclas- misclassifications; robust
sifications, and incorrect model specifications. This is crucial knowl- methods

gdge a.bout hovy yvell the methods convincein everyday life beca'use, MATHEMATICAL SUBJECT
in reality, conditions are usually not ideal, and model assumptions CLASSIFICATION

may not hold. The data may not fit the defined models well. Out- ¢ g

liers distort the estimates, and misclassifications reduce the quality

of most imputation methods. Several different evaluation measures

are discussed, from comparing imputed values with true values or

comparing certain statistics, from the performance of classifiers to

the variance of estimated parameters. Some well-known imputation

methods are compared based on real data and simulations. It turns

out that robust conditional imputation methods outperform other

methods for real data and simulation settings.

1. Introduction

Data often contains missing values, and the reasons for their appearance are manifold.
When not properly treated, outliers might severely affect the imputation of missing values.
We are left to ask: What methods are usually used for imputation, and do they work if the
ideal conditions are not met?

The best choice of an imputation method should consider the population parameter to
be estimated. In most cases, the data producer performs the imputation as one of the pro-
duction steps (see, e.g. the Cross Industry Standard Process for Data Mining (CRISP) [8]
or the General Statistics Business Production Model (GSBPM) [64] or other data mining
models) without knowing the estimators of interest from other data users. Typically, data
will be shared with many other people. Thus, generally, the producer of the data does not
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have knowledge of whether those who use the imputed data are attempting to calculate the
average of a population or any other population parameter.

In doing so, one does not know whether the users of the imputed data are estimating
the population mean or some other population parameter of interest. In this case, general
purpose imputation methods are usually used, which we compare in the following. Note
that further details can be found in [58].

Imputation and multiple imputation: Imputation replaces missing values in a data set
with an estimated value by using the non-missing information in a data set. After this
process, the data can be analyzed using standard techniques for complete data. To estimate
the variance of the estimators properly, a multiple imputation procedure is usually used.
Here, (single) imputation methods that contain a random component are applied more
than once to a data set with missing values to create multiple copies of the imputed data
sets. This approach makes it possible to properly estimate the variance of the estimated
parameters using, for example, Rubin’s rule to combine estimates [49].

Kind of imputation methods: Imputation methods range from model-free nearest neigh-
bor and projection methods, whereby model-free means no formal statistical model is
involved, to model-based and deep learning methods. Another distinctive feature of
method groups is whether a joint distribution is modeled (joint modeling) or whether
variables with missing values are modeled and imputed with multiple models (conditional
modeling) sequentially. It has been demonstrated that joint and conditional modeling are
equivalent when dealing with multivariate normal data. However, conditional modeling
has distinct advantages when dealing with more intricate scenarios. For example, [66]
mainly concentrates on conditional modeling for this purpose. Conditional modeling can
be more robust than joint modeling, especially in the presence of model misspecifications.
[52], for example, showed that conditional models used for multiple imputation can be
(much) more robust than multiple imputation using joint modeling. Simulations from
[33] have shown that this is especially true when categorical variables are included. Joint
modeling approaches range from fitting multivariate distributions. These distributions can
range from simple distributions to copulas (examine the applications of the ideas and
implementation discussed in [13]) or deep learning approaches such as, for example, the
implementation of generative adversarial neural networks to impute missing data in GAIN
[69]. They can be successful for relatively simple structured data sets. However, the more
variables and dependencies between the variables, the weaker a joint modeling approach
becomes, and the stronger fully conditional modeling becomes. For a deeper discussion,
see [58]. Obviously, the more complex the data and the more complex the relationships
between variables, the more difficult it is to model a joint distribution well [2,58,66].

Generally, it is quite obvious that multiple and multivariate methods that make use of the
correlations between variables are more appropriate than univariate imputation methods.
Especially when the missing values are MAR (missing at random), univariate methods
can be biased. MAR means that data are missing at random with respect to the value of
the variable with missing values but not at random with respect to other variables. When
missings occur randomly with respect to other variables and randomly with respect to
occurrence in the variable of interest, we call the situation MCAR (missing completely at
random).

Evaluation of the quality of imputations: To evaluate the quality of imputation meth-
ods, [10,59,61] proposed the use of visualization tools to compare the distribution of
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observed and imputed values. However, this is not always helpful. Observations with
imputed values may not lie in the center of fully observed observations, nor might their
distribution be similar, even though the imputation was excellent just because of a MAR
situation. For example, when missing values in income occur only for old people and
old people earn more than others, the imputed values should be in the upper tail of
the observed income values. Unfortunately, situations can be more complex in a multi-
variate setting, and thus more formal measures of the quality of imputations come into
focus. Many studies consider precision measures to compare imputed with known true
values, for example, [28,62]. Others compare simple statistics like the mean, standard devi-
ation, and correlation [40]. Bertsimas et al. [3], Poulos and Valle [43], Jager et al. [29]
and Woznica and Biecek [68] use complete data sets where all entries are known (“the
ground truth”) and then generate patterns of missing data for different percentages of train-
ing data, impute the missing values in the training set, and then apply standard machine
learning algorithms to obtain classification accuracy measures in a cross-validation
setting.

Simulation studies to evaluate the quality of imputations: In addition, with more for-
mal measures, properties such as unbiasedness and proper length of confidence intervals
for imputed values can be investigated within a simulation [58]. Simulations to evaluate
imputation methods for specific properties have been widely used in the literature. Some
are carried out by repeatedly setting artificial missings in the complete part with the same
mechanism as the missing values in the original data set [e.g. 30, 50, 62]. Others use a
model to repeatedly simulate artificial data using a model with known parameters for data
generation and missing value insertion. These parameters and their variance can then be
estimated and compared with the true parameters. Such simulations are also frequently
used to evaluate (multiple) imputation methods for unbiasedness in the variance esti-
mation of parameters. It should be mentioned that almost all scientific evaluations and
comparisons for judging variance estimates contain a very high percentage of missing
values [e.g. 14, 26, 51, 65] in combination with simplified simulation settings. Generally,
simulation studies are rare in this area with a missing rate of less than 50%, and usually
only two- or three-dimensional data are generated without intricate structures, outliers,
and misclassifications, and without data consisting of a mix of variables with different
scales.

Outliers and misclassifications: The most important condition for single and multiple
imputation of missing data is that the model used by the researcher to impute the missing
values must be appropriate [58]. An investigation carried out by [57] revealed that existing
imputation techniques have extreme difficulty in accurately filling in data when a signif-
icant interaction term is not included in the model. In practice, however, there might be
outliers and/or - in the context of classifications — misclassifications in almost every data
set.

Outliers can be categorized as representative, part of the population, or non-
representative, caused by measurement errors [7]. Extreme values, another type of devi-
ation, can also be observed. All these, including extreme values and outliers not caused by
measurement errors, can significantly affect non-robust imputation methods, leading to
poor imputation. This is particularly evident in statistical modeling, where leverage points
can greatly influence the regression fit. Therefore, the impact of outliers on imputation
methods is substantial, regardless of whether they are population outliers, measurement
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errors, or extreme values. In practice, it is often difficult to differentiate between these
outlier types, but both types equally influence the imputation process.

Especially multivariate outliers are difficult to detect [27], require specialized expertize,
and are a time consuming process [60]. It is not recommended to exclude outliers since it
reduces the sample size [15] and thus introduces bias in variance estimation.

For multivariate missingness (missing values in multiple variables), conditional imputa-
tion methods are applied sequentially across variables. Although this automation simplifies
method application, it does not ensure model assumption compliance or facilitate outlier
and misclassification detection, which can be time consuming. A more effective approach
is to employ robust imputation procedures that reduce the influence of outliers and/or
misclassifications, preventing arbitrary impact on imputations.

Contribution of this work: We add the following points to the existing literature:

o A wide range of different methods is compared, from simple to non-linear methods, 10
methods in total.

e Evaluate common imputation methods under realistic assumptions about outliers,
misclassifications, and model misspecifications.

e Inthe current literature, methods are mostly evaluated based on only one type of evalua-
tion measure, and either they use real data sets or they evaluate methods in a simulation
setting with model-based simulations. In this contribution, the evaluation of methods
is based on five different types of evaluation measures, namely (1) visual comparisons
using specific scatter plots including tolerance ellipses and results from the principal
component analysis, (2) evaluation with precision measures by comparing imputed and
true values and misclassifications, (3) comparison of correlation measures, (4) evalua-
tion based on bias and variance of estimators including coverage rates, (5) evaluation in
a classification context, and we use both real and simulated data sets.

e A more detailed description of the methods is provided than in other comparative
studies.

Outline: In Section 2 selected imputation methods are presented. It is beyond the scope
to consider all existing imputation methods, but it was the intention to select one of the
most popular methods for each type of method. Section 3 introduces well-known evalua-
tion methods to judge imputations and, thus, imputation methods. In Section 4, the data
used in follow-up chapters is described, and the simulation setting is outlined. Section 5
shows all results compared to other studies in Section 6. Section 7 contains conclusions
and recommendations.

2. Considered imputation methods

Before the actual methods are discussed, this paper will consider the particular features of
imputation methods in terms of their use of randomness.

2.1. Randomness considered by imputation methods

Randomization to account for model uncertainty can involve fitting models on boot-
strapped data or using Bayesian regression.
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Imputation uncertainty and involved randomization, for example in a regression con-
text, can include adding normal distribution values with zero mean and standard deviation
equal to the model’s residual standard error, sampling residuals with replacement, or boot-
strap without replacement from the residuals, using closest donors in predictor space
(PMM), or drawing residuals based on weighted probabilities (midastouch). For more
details and a mathematical description, we refer to [58].

2.2. Simplified methods

The following two methods are only used as a reference point and should not be used in
actual practice.

2.2.1. Deletion of observations with missing values
This method refers to list-wise deletion, case deletion, complete case analysis, and available
case analysis.

Deleting observations is often not recommended due to the considerable effort involved
in data collection and the potential to introduce biases. Missing data, especially if randomly
missing, can lead to inaccuracies in variance, standard error, and point estimates and also
affect the power and degrees of freedom in statistical analyzes.

2.2.2. Mean imputation

Mean imputation is when the missing value of a certain variable is replaced by the mean
(e.g. arithmetic mean or median) of available cases. Without proof, we claim that this
method is frequently used in practice and have therefore included it as a benchmark in our
analysis. A multiple or multivariate imputation method should always outperform a simple
mean imputation method, but as we will see later, this is not the case for all methods and
also depends on the evaluation metrics chosen.

2.3. Imputation without a model

2.3.1. Random hotdeck imputation
Hotdeck imputation replaces missing values in one observation (the receiver) with values
from a similar (with respect to a distance measure) observation (the donor). Similar means
that the receiver and the donor have similar values with respect to the observed part of the
two observations. Random means that the procedure randomly imputes missing values
from the available donors.

This method can be used for large data sets due to its computational efficiency and
therefore remains a popular method.

The implementation in [61] is used due to the computationally efficient implementa-
tion [32].

2.3.2. knearest neighbor imputation
The k nearest-neighbor imputation method (kNN) is, without a doubt, one of the most
popular imputation methods because of its simplicity.

It searches for the k nearest neighbors of the observation that contains the missing value.
Note that there is no need to calculate all distances between all observations, but only for
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those that contain missings. These neighbors are chosen by the smallest Gower distance
[24]. The mean value (e.g. arithmetic mean, median, mode) of the nearest neighbors k is
used to impute the missing value.

The implementation in [32,61] is used since it is fast and provides a lot of features. This
implementation supports weighting of variables (by the user or the random forest impor-
tance measure), randomness, conditions on donors, etc. In this work, sensible defaults are
used: no weighting of variables, the median as a method for aggregating the k nearest neigh-
bors in the case of numerical variables, the most frequent category in the case of categorical
variables to be imputed, and k=5.

2.4. Linear model-based imputation

2.4.1. Predictive mean matching (PMM) with mice

The standard PMM method uses Bayesian regression, i.e. it also takes model uncertainty
into account and a stochastic matching distance. Regression methods (default is ordinary
least squares regression) are not used to determine the actual imputed values, but are
used to construct a metric for matching observations with missing values to similar, fully
observed observations.

Instead of allowing all observations to be donors, standard predictive mean matching
(PMM) restricts the number of potential donors for each value to be imputed. There are
several options for how and how many donors are selected for the imputation of a missing
value.

The standard PMM then does the following - in the univariate missingness situation
- to impute missings in the variable y with n observations with fully observed predictor
variables and corresponding model matrix X of dimension n x p and with (obs) and (miss)
the index of observed and missing observations [see also 58, 65]. (yobs) and (ymiss) denote
the observed and missing parts of variable y.

(1) Apply a linear regression, Y(yobs) = X(yobs)B + €(yobs)> to estimate the unknown
regression coeflicients f.

(2) Take arandom draw from the posterior predictive distribution of B using Bayesian
regression to obtain new regression coeflicients B " Typically, this would be a ran-
dom draw from a multivariate normal distribution with mean [9 and estimated
covariance matrix of [9

(3) Using B " generate predicted values for y, namely y*, for all n values, including
those with missingness.

(4) For y(ymiss), that is, for each missing value, identify a set of k observations with
observed y(,op5) Whose predicted values are close to the predicted value for the
observations with missing data. Type 2: y* = X(yohs)ﬁ " matches jzj’.“ = X(ymiss)/é ¥
Distances in the response space and not in the predictor space are considered.

(5) Randomly select one of the nearby chosen candidates and assign its observed value
as a substitute for the missing value.

(6) For multiple imputation, repeat steps 2 to 5 m times to obtain the imputed data sets.

PMM, like many other methods, can be used when there are missing values in more
than one variable using an expectation maximum algorithm. This is done by a sequential
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procedure in which imputation is performed variable by variable and by repetition until
the imputed values stabilize.

In the following calculations, the implementation in R package mice [66] is used includ-
ing the default settings with 5 multiple imputations and 5 donors are used. In the case
of numeric response, predictive mean matching is used, while for categorical responses
logistic and polytomous regression is used. For details on these two methods, we refer
to [66].

2.4.2. Midastouch
Midastouch represents a different approach to selecting candidate donors.

Siddique and Belin [53] proposed to sample one donor with a probability, where the
probability depends on the distance between all donors and a recipient, thus all observed
cases can serve as donors. Thus, the selection of the number of candidate donors is no
longer needed. Gaffert et al. [22] enhanced this approach. Their proposed procedure is
described in the following only for missings in one variable, but it can be generalized in an
EM-based framework. Assuming only missings in y [see also 58, 65]:

(1) Distances are calculated with d;; = ‘ (xi - xj) . ﬁfi‘, with x; the ith donor observa-
tion (where y has observed values), and x; the jth receipient (where y has a missing
values). This corresponds to type 2 matching. ﬁAi,’ is derived from bootstrapped
X (yobs) data.

(2) Compute the probabilities of a recipient j receiving donor i from the full
donor pool based on weighted distances P(i ey D=f (a), P yobs Vieymiss> K) =
#j‘d,‘”) with }A’;obs derived from bootstrapped data, more precisely from an

ap};roxim;te Bayesian Bootstrap [for details see 22]. x expresses the importance of

a distance and the weights @ are bootstrap frequencies of the donors; see [22].

3/8
2
obs 2 : _
o Rihs) where RS, is the coefficient of deter

(3) Estimate x with x (R2, ) = (
mination of the model y(yobs) = X(yobs)B + € (yobs)- The larger the R? the more
important the distances in (2). When R? is about 0.9 then  is about 10.

(4) Take the observed value in y for the randomly selected donor as the imputation of
a missing value.

(5) Repeat steps 1 to 4 to impute all missing values in y(ymiss)-

(6) Repeat the whole procedure m times to produce m multiple imputed data sets.

Furthermore, the too low variability of the imputed data sets m is corrected by the Parzen
method [41]. Again, in the implementation in the R package mice midastouch is used
for numerical responses, but logistic and polytomous regression are used for categorical
responses.

2.4.3. Robust imputation with IRMI
A common assumption for multivariate imputation methods is that the data come from a
generating distribution (e.g. multivariate normal) or that the data can be transformed to it.
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This is not the case if the data contains outliers. In this case, standard methods can lead to
imputed values that are far away from the distribution of regular, observed observations,
and rather robust statistical procedures should be used.

IRMI (iterative robust model-based imputation) [62] allows EM-based imputation with
robust methods for mixed-scaled variables. For details of robust methods for count, binary,
and categorical responses, see [6]. The algorithm implemented in the R package VIM in
the function 1irmi works as follows [see also 58, 62]:

Step 1: Initialization of the missing values by, e.g. k-nearest neighbor imputation.

Step 2: Sort the variables according to the original number of missing values. We now
assume that the variables are already sorted, that is, M(x;) > M(x;) > --- >
M(xp), where M(x;j) denotes the number of missing cells in variable x;. Set I =
{1,...,p}.

Step 3: Setl=1.

Step 4: Denotem; C {1,...,n} theindices of the observations that were originally missing
in variable x;, and 0; = {1, . . ., n}\my the indices corresponding to the observed cells
of x;. Let X}Z’{)l and X}Tll)} denote the matrices with the variables corresponding to
the observed and missing cells of x;, respectively. Additionally, the first column of

Kl)l} nd X (s Z | consists of ones that take care of an intercept term in the regression
problem

(01) —X(OZ)}ﬁ +& (1)

with unknown regression coefficients # and an error term &. Note that X7 con-

tains only the remaining variables by default. The user can also define a separate

model for each of the Ith variables selected in the inner loop, then Xp\(;; denotes
the model matrix. In this way, the user can define the transformation of variables,
etc.

The distribution of the response xl(ol)

response is

e continuous, the link is g and a robust regression method (see below) is applied;

e categorical, generalized linear regression is applied (optionally, a robust method
may be selected);

e binary, thelink is log(7£- ) fori=1,...,n,ie. logisticlinear regression is applied
(optionally, a robust method can be selected);

e semi-continuous, a two-stage approach is used, where in the first stage logistic
regression is applied (default: classical logistic regression) in order to decide if a
constant (usually zero) is imputed or not. In the latter case, the imputation is done
by robust regression based on the continuous (non-constant) part of the response.

e count, robust generalized linear regression of family Poisson is used with link
log(u;),fori=1,...,n

Optionally, it is possible to use a stepwise model selection by AIC (parameter step

in function irmi) to include only the k most important variables, k C I\{l}, in the

regression problem above. Otherwise, k = I\{l}.

is considered in each regression fit. If the
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Step 5: Estimate the regression coeflicients # with the corresponding model in Step 4, and
use the estimated regression coefficients f to replace missing parts xl(ml) by

M =x"p. )

Step 6: Carry out Steps 4-5 in turn for each I = 2,...,p.
Step 7: Repeat Steps 3-6 until the imputed values stabilize, i.e. until

ST -2 <6, forallie mandlel,

1

for a small constant J, where fcl(rl."l) is the ith imputed value of the current iteration,

and il(;nl) is the ith imputed value from the previous iteration.

Step 8: Repeat once Step 3-Step 5, but in step 5 replace the missing parts with fcl(ml) =

X](cm’) B+eéer J1+ %#ml . The error term €* has mean 0 and variance corresponding

to the robust variance of the regression residuals €. The constant ,/1 + %#ml takes

into account the number of missing values (#m') in the response.

Regarding randomness, this approach is type 1 and takes only the imputation uncer-
tainty into account, but it can also be easily extended to type 2 [57]. IRMI is implemented in
R package VIM [32]. A variant and experimental version of IRMI that allows complex mod-
els for each variable to be specified, PMM and midastouch for the imputation uncertainty,
and a robust bootstrap for the model uncertainty are available in [57].

2.5. Non-linear methods

In case the transformation of variables or the inclusion of interactions does not linearize the
dependency between the response and predictions using model-based imputation, non-
linear methods are preferable.

2.5.1. Imputation using random forests
First, the missing values are initialized for random forest imputation, and with the com-
pleted data set, a random forest is fitted.

SetI ={1,...,p} with p the number of variables in the matrix X and let p(cons) and
P(car) the indices of the continuous variables (p(conty = I(conry C I and p(cary = I(cary € I)
and categorical variables, respectively. The algorithm works as follows [see also 39, 55, 58]:

Step 1: Initialize the missing values using a simple imputation technique, i.e. mean impu-

tation.

Step 2: Setl=1.

Step 3: Denote again m; C {1,...,n} the indices of the observations that were origi-
nally missing in variable x; and o; = {1, ..., n}\my the indices corresponding to the

observed cells of x;. || defines the number of missing values in variable . Let XK 0

and XKI{  denote the matrices with the variables corresponding to the observed and
missing cells of x;, respectively. For the fitting and prediction step, sort the variables
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in Xp () according to the original amount of missing values. Afterwards, sort the
variables back to the previous order.
Step 4: Fit the random forest: x;" ~ XK 0
Step 5: PredictX;" using X;" and replace/update the missing parts x;"
Step 6: Carry out Steps 4-5 in turn for each I = 2,...,p.
Step 7: Repeat steps 3-6 until the imputed values stabilize, i.e.

e for each continuous variable this holds

LMy =MD
2 & —x);
AMm
2 (xl,il)

<6, forallie mjand!l € Icon),

e for each categorical variable this holds

TR £ %
—Zl ll’l | b7 s, forallie myand [ € Iicap),
mj

for a small constant J, where f(l";’ is the ith imputed value of the current iteration,

and X, is the ith imputed value from the previous iteration. I defines the indicator
function, which has values of 1 when the condition is true, otherwise 0.

Step 5 can be modified to allow for predictive mean matching.

Random forest imputation method is available in R packagemissForest [55] and R
package ranger [39]. The latter one is the preferred implementation, as it is more efficient
in terms of computational speed, less error-prone, and contains more validity checks.

2.5.2. Imputation using XGBoost

Ensemble methods like Xtreme Gradient Boosting (XGBoost) [9] are popular in data sci-
ence for their robust performance, with XGBoost being a notable distributed gradient
boosting algorithm. It improves upon previous methods by subsampling with replacement
and random feature selection, and like random forests, is resistant to overfitting. Unlike
random forests, which build independent trees, XGBoost constructs successive decision
trees to correct preceding errors. It is applicable for both classification and regression
trees. More details are in [12], and the algorithm can sequentially impute missing val-
ues across variables, with multiple imputations possible through repeated procedure calls.
When multiple variables have missing values, they are sorted by ascending order of missing
values.

Step 1: Initialize the missing values using a simple procedure.

Step 2: Generate a bootstrap sample and fit a XGBoost model. This is done sequentially
for all variables.

Step 3: Predict the missing values for each variable using the model fitted on the bootstrap
sample and the observed values of the original data.

Step 4: Match the observations with missing values in the variable to be imputed, that is,
apply a predictive mean matching procedure for imputation.
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2.5.3. Imputation using deeplmp
Several proposals suggest the use of deep learning methods, particularly generative adver-
sarial networks, for joint modeling [34,37,69]. However, these approaches have limitations,
including the restriction to continuous data and the non-production readiness of exist-
ing implementations in Python [69] and R [34]. The suggested conditional modeling
approach iteratively employs deep artificial neural networks, where the output layer struc-
ture, activation function, loss, and evaluation function depend on the assumed variable
distribution. This algorithm operates in a chain, being applied repeatedly to each variable
until convergence, similar to an EM-based method.

Let X = (x1,Xp,...,Xp) be a n x D-dimensional data matrix. x,(:)bs) denotes the
observed values of the kth variable, while xlgmiss)
The method works as follows [56].

represents the missing values.

Step 1: Initialize the missing values using another imputation technique, such as kNN
imputation. Let X("P) the imputed data matrix.

Step 2: Setr « 0, the index for iterations and maxiter the maximum number of iterations.

Step 3: Calculate k, the vector of indices with columns in X that contain missing values,
and m, the number of missing values in X.

Step4: r=r+1

Step 5: Store previously imputed data matrix X-0d)

Step 6: forjin 1:p do
Fit the deep neural net: x; ~ (x1,X2,...,Xp) \ X; and predict xs(miss) X (impinew) ¢
update imputed data matrix with xs(miss)

Step 7: Update A = %|X("mp’”ew) — X (imp.old)|

Step 8: Until A > € and r < maxiter go to Step 4.

Step 9: Update X(P) = X (imp.new)

Hyperparameters of the artificial neural networks fitted should be chosen with care. To
prevent overfitting or underfitting, it is recommended to at least evaluate whether over-
fitting or underfitting occurs with a selected hyperparameter setting by comparing the
training error and the validation error in a cross-validation setting. These errors should
be approximately equal.

Usually, 2-3 iterations are sufficient (maxiter). Specifying all the details on the stopping
criteria would break the page limits of this article, but we refer to [56].

In the deep neural network, the dataset is processed through multiple epochs, with
200-300 epochs usually providing satisfactory results. To prevent overfitting, we employ
a stopping criterion based on the ‘patient value’, halting when weights remain stable
for a set number of epochs (35 in our case), and a 10% dropout rate in the first half
of the layers to ensure diverse re-imputation results. Layer-wise, too many can lead to
overfitting and too few to underfitting. For moderate to large datasets, starting with
1000 neurons and decreasing by 100 per layer up to the 10th layer is effective, while
for smaller datasets, configurations of 300, 128, 64, and 32 neurons are used across four
layers.

For the optimizer, our default choice is Adam [31], a first-order stochastic gradient-
based optimization based on adaptive estimates of lower-order moments.
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The choice of loss function depends primarily on the type of scale of the response vari-
able (the variable to be imputed). For nominal variables to be imputed, a cross-entropy
measure is usually used, while for continuous variables, a mean square error is used.
For the evaluation metrics that assess the performance of the model, the mean absolute
error is chosen. To allow for non-linear combination of neurons, we choose by default the
activation reLU, see [67]. For the last layer (which actually does the imputation), a lin-
ear activation must be used in case of continuous response to impute and softmax for a
categorical response.

3. Evaluation methods and measures
3.1. Evaluating the imputed values

3.1.1. Evaluation through scatterplots

This is for illustrations of bivariate continuous distributions. From the complete data, some
values are marked as missing, and the values are afterwards imputed. With this setting, we
know the true values from the complete data and the results of imputing these artificial sets
of missing values. We show one realization, and repeating the imputations would result
in slightly different results/graphics. However, a general picture can be drawn of how the
methods may perform. What exactly do you see in this illustration? In Figure 1, you see,
on the one hand, the complete data (black circles and gray triangles), those data values that
were set to missing (regarding their y values, gray triangles) and their imputation (red-
filled circles). In addition, robust covariances are shown in the form of tolerance ellipses
[46]. More precisely:

e Robust 95% tolerance ellipses are shown for both imputed and complete original data
(solid lines and shaded areas, black for original data, red for imputed data). Essentially,
the multivariate structure of the original data is compared with the imputed data.

o Italso compares the robust tolerance ellipses of the missing part of the original complete
data and the same subset of the imputed data. So here we compare only the missing part
and see if the observed values line with the imputed values, so we see a more accurate
slice of the data with missings and imputations.

3.1.2. Evaluation through biplots

A biplot [21] provides a powerful visual tool for visualizing the results of principal compo-
nent analysis. It can be used to (1) visually analyze whether the imputations went well and
(2) compare the imputation methods for missing values.

In a biplot for principal components, only k columns of scores U and loadings B are used,
in most cases 2. The scores U contain the information about the objects and the loadings
B contain the information about the variables.

Generally, in a biplot, this holds:

e The orthogonal projections of the observations onto the variable(s) (arrows) approxi-
mate the original (centered and possibly standardized) data values.

e The cosine of the angle between the variable(s) (arrows) approximates the correlation
between the variables.
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Figure 1. Results for the Animals data set. True values set to missing (grey triangles), imputed values
(red points) and their connecting lines to the true values (dashed gray lines), robust tolerance ellipses
of the complete data (ellipses in solid black lines) and after imputation (ellipses in black dashed lines)
and the subset of values to be imputed (ellipses in solid red for true values and in dashed red lines for
imputed values).

e The Euclidean distances between the observations approximate the Mahalanobis dis-
tances (= multivariate distances) of these observations. If the data were scaled before
applying PCA, the Mahalanobis distances of the scaled observations are approximated.

To analyze the imputed values and thus assess (or compare) imputation methods for
a given data set, the PCA scores of the imputed values can be highlighted in a biplot to
see their appearance compared to the PCA scores of the fully observed observations. Of
interest is using the fully observed data and randomly inserting some missing values. Then
these artificially created missing values are imputed. By comparing two biplots, one from
the complete data and one from the same but imputed data after inserting missing values,
we can observe how well an imputation method works.
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Additionally, the first two loading vectors, say B[, 2], which are obtained from a prin-

cipal component analysis of the fully observed complete data, are compared to the one
(imp)

obtained from insertion and imputation of missing values, say B[ px2]

by (in percentage)
, (imp) 1 i B
rel.diff. (B[pxz] B[pxz]) 2_17 Z Z b (3)

3.2. Evaluation with precision measures

Either in a simulation setting or for the complete part of real data sets, known values are set
to missing and imputed afterwards. Generally, for examples with precision measures, we
use 10% MCAR in each variable of a data set and repeat the procedure of setting missing
values and imputing them 1000 times.

3.2.1. Mean absolute percentage error (MAPE)
The MAPE is useful in simulations or when extra missing values are added to a dataset,
assessing the accuracy of imputations against true values. While this measure provides
valuable precision insights, it doesn’t fully capture imputation’s true essence, as it doesn’t
reflect the uncertainty of imputed values, which is later addressed by the coverage rate.
Let x™ be the imputed column of X, and x” the same normalized column,
containing the values that originally should have been observed.
The MAPE for continuous variables of a data set is then estimated by

X (zmp) (ong)l
MAPE(X ™) X)) = 100 - — z Z
i=1 ngl(cont) i i= 1]CI(cont)

(4)

xl(]orlg)
with m;; the cells of the indicator matrix M containing the information if an element is
missing or not (in case of a missing value, it equals 1, otherwise 0). The notation j C I(cont)
should emphasize that only continuous measurements variables are considered in this
equation, although the MAPE can also be computed for mixed variables in case Gower
distances are used.

3.2.2. Normalized mean root squared error (NRMSE)
For continuous variables in a data set, this is defined as [see also, e.g. 55]

NRMSE (X "P) x(0bs)y — 1 n (xl(JlmP) (or;g))2 5
( ) = 2?21 zjgl(cont) mij gjg%}m) Szjﬁorzg) (5)
with
2 (orig) 1 n (o0 _(orig) 2
J TS m—1 gl‘d(xu X000

A good performance is given at a value close to 0, and a poor performance is at a value
around 1.
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3.2.3. Differences in correlations (MSECOR)
The influence of the imputation on the multivariate data structure is here expressed by the
difference in correlation structure.

Let R = [r;;] be the sample correlation matrix of the original observations. Further, R =
[r;j] denotes the sample correlation matrix computed where all missing cells have been
imputed. The difference in the correlation structure is based on the Euclidean distance
between the two correlation estimates, as

D—-1D-1

1 ~\2 1 =

For simulations with certain observations selected as outliers, the measure should only be
computed for the non-outliers.

3.2.4. False classifications (FC)

The equivalent error measurement for categorical and binary variables is the percentage
of the imputed values that are not equal to the original category of an observation. The
proportion of incorrectly classified entries is known as the False Classification Rate (FCR)
and is calculated using the following equation.

| ‘ | n . .
FC(X(lmp),X(Ong)) =100 - B Z Z ]I(xi(j’mp) 75 xl(jﬂrlg)) (7)
21 2 iC ey Mii S j

gl(mt)

The notation j C I indicates that only binary or categorical variables are considered.

3.3. Evaluation based on estimators

For these kinds of evaluations, we set the number of replications to 1000 in the simulations.
The bias of the estimate 6 is defined as the difference between the expected value of the
estimate and true’s population 0,

b@) = E@®) — 0. (8)

The estimator @ is an unbiased estimator of @ if and only if b(d) = 0.
The variance of an estimator is defined as

var(0) = E [(é _ E[é])z] . )

3.3.1. (Root) mean squared error of parameter estimates
The MSE consists of the variance and the bias, MSE(#) = var(#) + (b(9))?. Often the root
mean squared error is preferred, given by

RMSE(0) = vMSE (10)

The truth is only known in a simulation setup with synthetic data. Thus, the bias can only
be computed in a simulation as well as the variance and (root) mean squared error.
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3.3.2. Coverage rate of confidence intervals

The coverage rate (CR) is the proportion of confidence intervals that capture the true
value and should match the nominal rate. For instance, with a 95% confidence level,
the simulated CR should be 0.95. A CR lower than the set confidence level suggests a
biased estimate or insufficient spread of the imputed values. In contrast, a higher CR
indicates an excessive spread of the imputed values, increasing the variability of the
estimator.

3.4. Evaluation in a classification context

If one only intends to use the data for a classification task and only predictive performance
is relevant, one can compare different imputation methods with the F1 score on a test set
or via cross-validation. The F1 score is a widely used performance measure that remains
informative, even in the case of unbalanced data. For a response with two categories,
this is

Accuracy = IP + 1N (11)

TP+ TN + FP + FN
2TP

l=—7—-——
2TP+ FP+ FN

(12)

where

TP (true positive): An observation of the test data set that is correctly classified in relation to
the reference group.

TN (true negative TN): An observation of the test data set that is correctly classified
regarding the comparison group.

FP (false positive): An observation of the test data set that is incorrectly classified with
respect to the reference group.

FN (false negative): An observation of the test data set that is incorrectly classified with
respect to the comparison group.

4. Data sets and simulation setting

To evaluate methods, one can repeatedly remove some available observed values in sim-
ulated, fully observed real data sets, or observed parts of real data sets, predict those
artificially created missing values with imputation methods and calculate the errors of the
prediction, and average the obtained errors. Additional properties, such as the coverage
rate of confidence intervals, can be investigated for simulated data. For all data sets where
the results are based on one single realization, the seed of the random number generator
was set to 123 for the Mersenne-Twister random number generator to remain as fair as
possible.

4.1. Using real data

Where not defined differently, Robust Mahalonobis distances with a cut-off of
X(zdf: p—1,p=0.99) Were used to determine outliers, with p the probability of being extreme

based on the 2 distribution with df the degrees of freedom that is the number of variables
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— 1. This threshold is used to avoid putting missing values in outlier observations. Miss-
ing values are never placed on outlier observations because otherwise a method would be
judged to be working well if an outlier is imputed with an outlier value. In reality, the goal
is rather to impute outliers with a reasonable value that is part of the distribution of the
main part of the data set. Robustness is achieved by using the MCD estimator to calculate
the covariance and the mean for the Mahalanobis distances ([see, e.g. 16]).

4.1.1. Animals: average brain and body weights

For a simple illustration in 2D, we use the animals data set from [48]. The data consist of
the average brain and body weights for 28 species of land animals. Data were logarithmic
transformed prior to analysis. Ten missing values were inserted, and their position is clearly
visible in Figure 1.

4.1.2. Prestige: statistics on occupational groups

The Prestige data has 102 rows representing means in occupational groups and columns on
education, income, percentage of women, occupational code, and type of occupation (three
categories). This data set was analyzed (among others) in [18]. Note that results are com-
parable good for IRMI and missRanger using the original data. Differences in the methods
show when adding two realistic occupational groups that moderately deviate from the
occupational groups in the data set (clerks with education = 15, income = 1700, share
of women = 0, prestige = 90 and type = professionals and investors with education =
10, income = 500,000, share of women = 0, prestige = 10 and type = professionals).
Unless otherwise stated, 10% of the missing values in all variables were introduced with
MCAR.

4.1.3. Bushfire: satellite measurements

This data set contains satellite measurements on five frequency bands, corresponding to
each of 38 pixels, and was used by [5] to locate bushfire scars. The data set is a complete
data set consisting of 38 observations in 5 dimensions and was analyzed in [1,4,35,36,63].
The data set contains 12 clear outliers: 33-38, 32, 7-11; 12 and 13 are suspect [35,63]. The
data set is available in R package robustbase [47].

4.1.4. Freedman: crowding and crime in U.S. metropolitan areas

The Freedman data frame from the Bureau of the Census has 110 rows and 4 columns on
crowding and crime in US metropolitan areas with 1968 populations of 250,000 or more.
There are some missing data. The data was analyzed (among others) in [19] and is available
in R package carData [20].

4.1.5. lIris

The Iris data set is a multivariate dataset with 5 columns and 150 observations used and
popularized in [17] and is one of the most commonly used data sets in statistics and statis-
tics education. It contains the measurements sepal length and width and petal length and
width for 50 flowers from each of 3 species of iris. The data set is available from the datasets
package in R [44].
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4.1.6. Credit card fraud detection

The credit card fraud detection data set contains transactions, timestamps, a nominal label,
and 984 observations on 30 features about the transactions [11]. The features are princi-
pal components of the original features due to confidentiality. The data set is available at
Kaggle.

4.1.7. Sonar

The sonar data set contains 208 observations on 61 sonar measurement features and a
nominal class label, whether the object is a metal cylinder (mine) or a rock cylinder [23].
The data set is available at https://datahub.io.

4.2. Simulating data

Two different settings are used, one used in [45] and one that discusses misclassification.
The aim is to show the influence of representative or non-representative outliers or extreme
observations on imputations from different methods. All results produced in the different
simulation settings are based on 1000 repetitions.

4.2.1. Simulation setting 1: outliers

Raessler and Miinnich [45] describes in detail how simulations can be used to determine
whether a method of multiple imputation is correct or at least approximately correct, i.e. if
the bias is zero and the coverage rate is equal to the nominal rate.

Let
40 \T /10 44)\?
(AGE,INCOME) ~ N ,
1500 44 300

be the population from which samples of size 200 are drawn. Raessler and Miinnich [45] set
30% of the income values to missing values. In the following, we only show results obtained
with a MAR situation by increasing the probability of missing income information, the
higher the AGE value.

We enhance the simulation study from [45] by including outliers and increasing the
number of outliers from 0 to 80 to also observe the effects of the outliers on the meth-
ods. Outliers are simulated as high-leverage points by adding or subtracting the diagonal
elements of the covariance matrix times 0.8 from the mean. In this way, the outliers were
randomly placed at one of four positions with a variance of 1/5 of the original data.

As in our scenarios with real data, missing values are only inserted for observations that
are not outliers.

4.2.2. Simulation setting 2: misclassification

We simulate data as the relative energy consumption of a machine (per hour) depending
on the runtime and the type of machine. With longer run times, it could become more
efficient by heating up. Data generation is motivated by a real-world application with an
industry partner.

energy; = eZ—HI(type,:l)—O.l*log(runtimei)-i-ei (13)
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where
type; ~ Bin(p = 0.4), runtime; ~ EXP(1 = 1/100), ¢, ~ N'(u = 0,6° = 0.1)

withi=1,...,n = 200.

As one would have to deal with in real life, some machines are misclassified to the
wrong type in the resulting data set. As in the previous simulation setting, 0 to 80 machines
are misclassified to show the effect on the imputation quality of the imputation methods.
We add 30% missings in a MAR setting to the energy consumption for non-misclassified
observations.

5. Results
5.1. Visual diagnostics in 2D

In Figure 1, the results for one realization of imputing the Animals data set are shown.
Clearly, mean imputation gives the worst results, and all imputed values lie exactly on
Y(obs)- One can observe that especially predictive mean matching with package mice, as
well as midastouch and missRanger, is highly influenced by outliers. Also, mixgb and kNN
might choose an outlier as a donor in a local neighborhood. The method IRMI is robust
against outliers and provides by far the best results in terms of visual comparison of the
tolerance ellipses but also on the precision measures MAPE, NRMSE, and MSECOR. For
example, the mean absolute percentage error is only about half for IRMI compared to all
other methods, and the covariance structure is perfectly preserved.

The scores and loadings of the first two principal components are shown in Figure 2.
Above left is the result for the fully observed data set. From this data set, 25 missing values
are inserted into the variable prestige with MAR related to income, as prestige is difficult
to measure and therefore contains missing values. It is even slightly more difficult to deter-
mine prestige with high income, e.g. for general directors or ministers. The results represent
the solution for one realization and can vary slightly for other realizations.

The relative difference (in percentage) of the angle of the loadings vectors is the small-
est for IRMI, so the loadings are most similar to the truth for this method compared to
any other method. Of course, IRMI robustly treats the outliers, so the outliers seen in
the full original data below right are imputed differently. Of the model-based methods,
PMM has the highest error, and the tree-based methods missRanger and mixgb have even
slightly higher errors: obviously, the correlation between education and prestige is lower
after imputation when applying these methods. Even hotdeck has approx. the same error as
PMM, midastouch, missRanger and mixgb. deepImp and kNN outperform these methods.

5.2. Numerical results from real data

Figure 3 shows the NRMSE and the differences in the correlation structure with respect to
the data set Prestige. It can be seen that IRMI gives the best results, followed by KNN and
deepImp. The results of missRanger and mixgb agree but are much worse than those of
IRMI, kNN, and deepImp. midastouch, PMM, and hotdeck gave the worst results, except
that mean imputation is the weakest imputation method.
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Figure 2. The biplot for the complete data set (Prestige) is shown in the upper left. The gray dots repre-
sent values that are set artificially to missing with MAR. The imputed values from different methods are
also shown in gray, while the fully observed observations are again in black.

The imputation of the Bushfire data is done best by IRMI, see the results in Figure 4.
This is not surprising since the Bushfire data includes a few outliers. missRanger performs
better than mixgb. kNN and PMM gave comparable results. Midastouch, deepImp, and
hotdeck imputation perform even worse than mean imputation. The reason why deepImp
gave no promising results is both the small size of the data set and the outliers in the small
data set.

The best-performing methods for the Freedman data are kNN (for the NRMSE)
and IRMI (for the MSECOR), see the results in Figure 5. mixgb now provides bet-
ter results than missRanger. For missRanger and midastouch the results scatter a lot,
while IRMI is more stable. Mean imputation is similar to missRanger, PMM, and midas-
touch. In other words, missRanger, PMM, and midastouch perform poorly on this
data set.
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Figure 3. NRMSE and MSECOR from the imputation of the Prestige data.
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Figure 4. NRMSE and MSECOR from the imputation of the Bushfire data (in log-scale).

Lastly, we show a result in a classification context using the well-known Iris data in
Figure 6. For the numeric variables the NRMSE and MSECOR are calculated and displayed
in log10-scale, and for the classification variable (Species) the ratio of false classifications
of imputed values are reported. IRMI outperforms other methods, and, in addition, the
results are mostly more stable than for other methods; e.g. the results on the NRMSE vary
less for different runs than for other methods. The results for PMM and kNN agree. Also
the results of the non-linear methods, missRanger, and deepImp agree, while mixgb is the
worst non-linear method. Midastouch was unable to impute the missing values in the Iris
data set. Therefore, no results can be reported.
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Figure 6. NRMSE, MSECOR (both in log10-scale) and false classifications of imputed values from the
imputation of the Iris data.

5.3. Results from simulations

5.3.1. Simulation setting 1: outliers
The data are simulated as in Section 4.2.1, and the different imputation methods from
Section 2 are applied. This is repeated 1000 times, and for each time, we calculate an
estimated mean and 95% confidence interval for income. For every method and 0 to 80 out-
liers, we report the root mean squared error in Figure 7 and the coverage rate in Figure 8.
Note that the outliers are only added for the imputation part. We are interested to see the
effect of outliers on the imputation methods and not on the estimators of the population
mean for income.

Almost all methods are influenced by outliers, so they can no longer perform mean-
ingful imputations. Simple mean imputation performs the worst, and results are not even
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Simulation setting Raessler and Muennich (2014), extended, MAR
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Figure 7. Results on the root mean squared error of the arithmetic mean estimates based on the sim-
ulation setting 1. The thick green line represents the actual method, while the thin light gray lines are
used for comparison with other methods.

shown for more than ten outliers to make the other methods more comparable in the
figure. VIM::knn and missRanger::missRanger outperform VIM:hotdeck, mice’s PMM
and midastouch, mixgb::mixgb and deepImp. Still, all these methods are very sensitive
to outliers, and the imputations are highly distorted due to outliers in the data set. The
corresponding RMSE in Figure 7 shows that the mean square error increases heavily, not
to say explodes, already with few outliers in the data when imputation is performed with
non-robust methods such as pmm (mice), missRanger, and all other non-robust methods.
The imputations with IRMI are not affected by outliers: the RMSE remains at the same
level regardless of how many outliers we add.

The coverage rates are comparable, with mice’s pmm, and midastouch performing the
best when no outliers are introduced. When outliers are introduced, the coverage rates of
most methods change, clearly seen in Figure 8. The imputations of all non-robust meth-
ods are already affected by a few outliers, whereas robust imputation methods can handle
even a large amount. A direct comparison of VIM::irmi (single imputation) and VIM::irmi
mi (multiple imputation) shows a slightly better coverage rate when using IRMI with a
multiple imputation framework.

Although the results from complete case analysis stay on a higher level, like for IRMI
and IRMI mi, naturally deleting observations with missing values cannot affect imputations
since no imputations are carried out. Thus in the case of outliers, a complete case analysis
would be even better than all non-robust methods.
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Simulation setting Raessler and Muennich (2014), extended, MAR
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Figure 8. Results on the coverage rate of the confidence interval of the arithmetic mean based on the
simulation setting 1. The thick green line represents the actual method, while the thin light gray lines are
put for comparison with other methods.

5.3.2. Simulation setting 2: misclassification

Let us return to the example of the energy consumption of a machine explained in
Section 4.2.2. Since the relationship between energy and runtime is log-normal, we first
logarithmized these two variables, as is common practice, before imputation to apply an
obvious transformation. The estimator of interest is the group mean of the energy of the
first type of machine. As in the previous example, the data is simulated 1000 times for
0 to 80 misclassification, and different imputation methods are applied. For each impu-
tation, we estimate the group mean of the energy of the first type of machine along
with a 95% confidence interval. We report the root mean squared errors in Figure 9
and the coverage rates in Figure 10. As before, misclassifications are added only for
imputations.

It is interesting to see that the second-best method is k nearest neighbor imputation
(VIM::kNN), followed by missRanger, which gives reasonable imputations up to a relatively
high number of misclassifications. Again, VIM::irmi, when applied in a single or multiple
imputation setting, is robust against misclassification. deepNN provides the worst results
(except mean imputation) and is incapable of having good coverage rates. Again, it is better
to delete observations with missing values and perform a complete case analysis than to use
non-robust imputation methods in case of misclassifications. However, the RMSE value is
higher in that case than for robust imputation with IRMI, so IRMI is preferable.

Looking at Figure 10, we see the same patterns as in the previous example. mice’s
pmm, and midastouch result in the closest coverage rate to 95% in the case of very few
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Energy vs. Runtime, simulation, MAR
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Figure 9. Results on the root mean squared error of the arithmetic mean estimates based on the sim-
ulation setting 2. The thick green line represents the actual method, while the thin light gray lines are
used for comparison with other methods.

misclassifications. When adding more, all the methods except for VIM:irmi and complete
case analysis break down. When there are more than 10% misclassifications, one should
better just delete missing values rather than applying non-robust imputation methods.

5.4. Results on classification

We might only be interested in the resulting classification performance if a dataset is only
used to apply a classification algorithm. In the following two examples, we show real-world
classification problems. At first, 10% of every feature is set to missing completely at random.
The missings are then imputed using various methods and a random forest classifier is
applied and tested on a hold-out test set. This procedure is repeated 100 times and the
resulting F1 scores are reported.

5.4.1. Credit card fraud

Using the credit card fraud dataset and the above-described process, the goal is to classify
transactions as fraudulent or valid. Depending on the imputation method used, the perfor-
mance of the random forest classifier changes and is shown in Figure 11. Basically, it does
not matter which imputation method is used, except for complete case analysis that results
in a lower F1 value. In other words: If one is only interested in classification performance,
one can even use the otherwise poor mean imputation. Or if one is interested in comparing
imputation methods, one should not use a classification example (only).
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Energy vs. Runtime, simulation, MAR
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Figure 10. Results on the coverage rate of the confidence interval of the arithmetic mean based on the

simulation setting 1. The thick green line represents the actual method, while the thin light gray lines are
used for comparison with other methods.
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Figure 11. F1 score of a random forest classifier for the credit card fraud dataset after including and
imputing missing with different imputation methods.
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Figure 12. F1 score of a random forest classifier for the sonar dataset after including and imputing
missing with different imputation methods.

5.4.2. Sonar

Using the sonar data set and the above described process, a random forest classifier uses
the sonar signals to classify rocks mines. The performance of the random forest depending
on the imputation method is shown in Figure 12. We basically see the same patterns as in
the credit card fraud example: it does not matter with which method the missing values are
imputed.

5.5. Summary table of results and computational times

All results are summarized in rank order in the following tables. Table 1 shows that IRMI
generally outperforms the other methods in all assessment metrics considered and in visu-
alization diagnostic plots. KNN is mostly second place and performs well compared to
the other methods. missRanger also performs well, with weak results, except for biplot
analysis and coverage. deepImp scores well on visualization, precision and correlation mea-
sures, but performs less well on measures based on the variance of the estimators. mixgb
is mostly outperformed by missRanger. PMM and midastouch are ranked below average.
Mean imputation performs worst in all evaluation measures.

Table 2 reports the rankings for each data set. IRMI outperforms all other methods,
except for the Freedman data where kNN was better. Again kNN mostly is on second place.
PMM and midastouch gives unsatisfactory results for some of the data sets (Prestige, Bush-
fire, Freedman, Credit Fault), but they perform well - compared to other methods - for the
Income data. deepImp is sensitive to outliers and misclassifications, thus the results are
worst for Bushfire and Energy data. missRanger is sometimes ranked very badly, e.g. for
Income and Energy data.
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Table 1. Summary of the results: ranking of methods according to the quality of imputations for all
considered different kinds of evaluation criteria.

Rank Vis 2D Biplot Precision Correlation RMSE Coverage F1
1 IRMI IRMI IRMI IRMI IRMI IRMI *
2 midastouch deeplmp missRanger kNN kNN kNN *
3 missRanger kNN deeplmp missRanger missRanger PMM *
4 deeplmp midastouch kNN PMM midastouch midastouch *
5 kNN hotdeck mixgb deeplmp PMM mixgb *
6 PMM PMM PMM mixgb hotdeck hotdeck *
7 mixgb missRanger midastouch hotdeck mixgb missRanger *
8 hotdeck mixgb hotdeck midastouch deeplmp deeplmp *
9 mean mean mean mean mean mean *

Notes: * ...the results are too close to each other, a ranking is therefore not meaningful.

Table 2. Summary of the results: ranking of methods according to the quality of imputations for all
considered data sets.

Method Animals Prestige Bushfire  Freedman Iris Income Energy ~ CreditFraud  Sonar
mean 9 9 6 4 8 9 9 1 2*
hotdeck 8 8 9 8 7 6 5 - -
kNN 5 2 5 1 2 2 2 3 2%
PMM 6 7 4 6 3 2 3 6 2*
midastouch 2 6 7 7 2 3 6 2*
IRMI 1 1 1 2 1 1 1 3 2%
missRanger 3 5 2 5 5 7 7 1 2*
mixgb 7 4 3 3 6 5 5 5 2*
deeplmp 4 3 8 4 8 8 6 1
Notes: ~ ...was not tested due to the absence of an ordering variable in the data set. * ...the results are too close to each

other, therefore, a ranking is not questionable.

Table 3. Computational times in seconds on Intel Core i9 with 64 GiB memory, single CPU.

Method Animals Prestige Bushfire Freedman Iris Credit Fraud Sonar
mean 0.1 0.1 0.1 0.1 0.5 0.1 0.1
hotdeck 4.2 44 4.2 4.2 15.0 4.1 4.1
kNN 34 34 33 32 20.6 34 34
PMM 17.8 17.2 17.4 17.8 169.8 171 17.6
midastouch 28.5 27.8 28.0 27.6 395.8 26.5 26.7
IRMI 10.2 10.2 10.0 10.1 84.9 9.8 9.9
missRanger 16.6 16.9 16.7 16.4 118.4 16.3 17.7
mixgb 227 248 234 160 1786 180 258
deeplmp 2208 2306 2322 2241 49,557 2231 2492

The computational times are reported in Table 3. Note that only default settings are used,
and the computational times can vary depending on how these defaults are overwritten.
mixgb and deepImp are the slowest, followed by PMM and midastouch.

6. Discussion

Jadhav et al. [28] compared the methods of mean imputation, median imputation, kNN
imputation, predictive mean matching (PMM), linear Bayesian regression, linear regres-
sion, non-Bayesian method and random sampling with numerical data sets from the UCI
machine learning repository. They used the normalized RMSE (NRMSE) to compare the
performance of the different imputation methods. KNN imputation [32] outperformed the
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other methods regardless of the number of missings inserted. This is comparable to our
results, as kNN imputation often leads to better results compared to the examined meth-
ods of [28]. However, we examined more methods, used many more evaluation metrics
and methods, and data sets that included non-numeric variables. IRMI was not studied by
[28], but it was the superior method in our comparisons.

Also others compared numeric data with only very few selected methods only, like [54].
They found out that missForest should not be used for imputation since it gave the worst
results compared to imputation with principal component analysis and similar methods.
However, their simulations were based on data generated with the multivariate exponential
power and the multivariate skew-normal distribution only, thus under ideal considerations
and for numeric data only. We did not consider imputation methods based on principal
component analysis because they (imputePCA and MIPCA from R package missMDA,
impPCA from package VIM) did not give competitive results for our numerical data under
investigation and are only suitable for numerical data.

In other studies, one of the problems is data generation in simulation studies, such as
[25] who used a multivariate normal distribution of the covariate data. This is of interest
for comparing methods in an idealized setting, but does not reflect whether the imputation
methods produce reliable results for real or realistic data, as was investigated in our paper.

Furthermore, the simulation study of [42] is based on simplified data generation based
on normal distributions and the choice of only one single evaluation metrics: the mean
squared error between the original data values and the imputed ones. Their simulation
results indicate that (group) mean imputation performed better compared to MICE which
had the lowest performance. This contradicts our results and can only be explained by the
fact that the simulation is based on oversimplified, non-realistic assumptions and that the
evaluation metric does not take into account the variances of the estimators and coverage
rates, but only represents a precision measure.

May et al. [38] compared with mice (using PMM for continuous variables and logis-
tic regression for categorical variables), missForest and kNN (from VIM) for mixed-type
data and found that imputation with random forests was superior, while PMM (mice) per-
formed worst. The results were obtained by deleting and imputing the values of all the cases,
and the performance was assessed by comparing the original and imputed values with the
mean square error. Again, this covers only one aspect, and this precision measure does not
assess the variance of the estimators or other non-precision measures as we additionally
applied in this contribution.

Woznica and Biecek [68] compared random sample, mean imputation, softimpute (10)
that works only for numeric variables, missForest, KNN (from package VIM), hotdeck
(also from package VIM in two versions, sequential, random hot-deck), PMM and logis-
tic regression (with package mice) in a classification context. According to the averaged
ranking, mean imputation was best for 2 of 5 models. Mean imputation was the winner
for the F1 measure and kNN for the AUC measure. This is consistent with our results, as
in the classification context, the choice of imputation method did not matter much, and
even mean imputation is competitive in this context. However, we did not only investigate
classification performance, and in all other experiments and simulations we showed that
mean imputation performs (by far) the worst.

Jager et al. [29] also found that simpler imputation methods in a classification context
based on the RMSE and F1 measure gave competitive results. They also compared mean



Table 4. Rough comparison between methods for specific situations in a data set.

Mixed type Individual user-specified Multiple Multiple
Method of variables models Outliers Misclassifications MAR missingness Non-linearities imputation
mean/median/ mode v (V) (V) v
hotdeck (VIM) v v v v
kNN (VIM) v v v v
PMM/log-reg/polyt. (mice) v v v v
midastouch/log-reg/polyt. (mice) v v v v
IRMI (VIM) vt v v v v v v
missRanger v ** v v v v
mixgb v ** v v v v
deeplmp v * v v v (V)

Notes: * only type 1. ** not applicable since it is a non-linear model. *** only approx./limited through dropout. ™ can deal also with semi-continuous variables.
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and kNN imputation with missForest, variational autoencoders, and generative adversarial
network imputation. In almost all experiments, random forest-based imputation achieved
the best imputation quality, but as mentioned earlier, the differences with mean imputa-
tion were very small. VAE and gain failed frequently and were therefore not competitive.
This is also in line with our results on classification, but since we compared with methods
such as IRMI, deepImp, mixgb and many others and did not only compare the methods
in a classification context based on RMSE and F1 measures, we can greatly extend their
conclusions and point out that other methods - such as IRMI - gave significantly better
results.

Opverall, we compare more methods under more realistic assumptions with a wide range
of different evaluation measures — from visual diagnosis to precision measures to coverage
rates and misclassification errors for real and simulated data. In this way, a detailed judge-
ment about the performance of imputation methods can be made about the advantages and
disadvantages, and recommendations can be formulated, as is done in the next section.

7. Conclusion

Our research expands existing literature by comparing common imputation methods
under realistic scenarios involving outliers, misclassifications, and model errors, using
various evaluation measures. While visualization tools like [59] help in spotting poor
imputations, they have limitations, especially in MAR situations. Biplots, however, reveal
multivariate data structures, aiding in visual comparison of imputation methods. Precision
measures assess the accuracy of imputation methods but don’t fully address imputation and
model uncertainty, which are better evaluated by RMSE or coverage rates. Interestingly,
mean imputation often performs well in misclassification scenarios, but relying solely on
classification performance is inadequate as data have broader uses. Evaluating imputation
methods on artificial data can assess coverage rates effectively, yet may not always reflect
real data scenarios, hence the importance of testing on actual datasets by artificially mark-
ing some values as missing. Care should be taken to avoid imputing outliers with outlier
values. While all investigated methods handle mixed variable types, not all are suitable for
special distributions like semi-continuous or zero-inflated data, as summarized in Table 4.

IRMI offers several advantages, including handling semi-continuous variables and
allowing for separate models for each variable, unlike other multivariate imputation meth-
ods that use a response-versus-predictors approach. Particularly beneficial for real data,
which often contain outliers or misclassifications, robust imputation provides an effec-
tive tool without requiring expertize in outlier detection. These methods cleverly reduce
the influence of outliers and misclassifications, ensuring limited impact on the imputation
process. Thus, robust imputation methods yield comparable results to non-robust ones in
elliptically shaped data and remain unaffected by outliers and misclassifications, making
them a reliable choice for practical data imputation.

Relationships between variables are often non-linear, but can usually be linearized
through transformations (like logarithmic scaling) or feature additions (such as quadratic
terms or indicators for structural breaks). In practice, it’s advisable to first establish
linear relationships before imputing raw datasets, except with non-linear methods like
deepImp, random forests, or boosting techniques. These methods, including missRanger
and mixgb, are effective in avoiding model misspecifications, particularly in datasets
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without outliers and where no additional variable transformation is desired. However,
automated imputation methods like the multivariate framework of mice may not always
check model assumptions, making outlier and misclassification detection time-consuming.
Using robust imputation procedures like IRMI, which downweight the influence of out-
liers, is a preferred alternative to prevent imputations from being arbitrarily skewed by
such anomalies. KNN imputation provides reliable results that are often almost as good
as IRMI, but often better than missRanger, mixgb, deepImp, PMM, midastouch. It is an
attractive method, even if multiple imputation is not (easily) possible. It is easy to explain
and does not involve a statistical model, so no misspecifications of a statistical model can
occur.

The multiple imputation paradigm guarantees that the variances of the estimators are
not underestimated and can reflect the uncertainty of the model and the imputation.
Model uncertainty can be considered by bootstrapping the data set or by Bayesian regres-
sion, while imputation uncertainty is achieved by drawing from predictive distributions.
While the mice framework considers both model and imputation uncertainty, IRMI only
considers imputation uncertainty by default. Model uncertainty can be considered by
bootstrapping the data before each (repeated) call of IRMI or by using its experimen-
tal extension in [57]. Nevertheless, in real-life situations, model mispecifications, outliers,
and misclassifications have more influence on the imputations, as easily can be seen in the
results presented in this paper.

VIM::irmi used as a single imputation method, but also VIM: : irmi used in a
multiple imputation framework are robust to outliers and misclassifications and provide
reasonable imputations even in the presence of outliers and misclassifications.

Even a few misclassifications can severely affect non-robust imputation methods. In this
case, even a complete case analysis would be more reliable than using non-robust methods.
Robust imputation can handle misclassifications and is the best choice.
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